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A collection (class) of controllable dynamical systems, each described by Lagrange equations of the second kind, is considered. 
The class is defined by specifying the bounded domains in which the controls and generalized forces may take their respective 
values. The systems differ from one another both in the expression for the kinetic energy, which may be chosen at will from a 
set of positive-definite quadratic forms in the velocities (with coefficients, which depend on the coordinates), and in the generalized 
forces, which may vary within the same domain. Necessary and sufficient conditions are established for any such class to be 
completely controllable (i.e. for any system belonging to the class to be completely controllable). These conditions have an obvious 
physical meaning. In the ease, for example, of robot manipulators, the conditions imply that a system is completely controllable 
if and only if the maximum values of the control torques exceed the corresponding torques of the other forces (weight, resistance, 
etc.) in absolute value. © 1997 Elsevier Science Ltd. All fights reserved. 

The need to consider collections of systems (not just single systems) arises in control problems with 
incomplete information, particularly the control of technological systems whose parameters may vary 
arbitrarily over a w.~de range (the mass of the payload in manipulative systems, coefficients of resistance, 
the parameters of the environment, and so on). When designing models of biomechanical systems, it 
proves difficult to determine exact expressions for the kinetic energy and generalized forces. In that 
case one can speak only of domains in which the forces may vary, or assume the values of certain 
functionals (such as maxima or minima of various quantities) to be known. It is therefore natural to 
consider a whole collection (class) of controllable dynamical systems, each of which is described by 
Lagrange equations of the second kind. The class is defined by specifying the bounded domains in which 
the controls and generalized forces may take their respective values. The systems of the class may differ 
either in their expre~ions for the kinetic energy, which is chosen arbitrarily from a set of positive-definite 
quadratic forms in the velocities (with coefficients which depend on the coordinates), or in their 
generalized forces, which may vary within the same domain. By singling out a class of completely 
controllable Lagrange systems one can considerably simplify the solution of the controllability problem 
for a specific systera when one's information about the active forces and parameters is incomplete. 

Controllability conditions for classes guarantee that this property will be maintained when the 
parameters and the forces are varied, i.e. they are robust in nature. That this is so enables one to 
determine general regularities, free from the individual peculiarities of specific systems. The results 
extend to the case of non-natural systems in which the kinetic energy may be an arbitrary strictly convex 
function of the generalized velocities. 

1. F O R M U L A T I O N  OF THE PROBLEM 

We will consideJ: the class of all controllable dynamical systems whose motion in independent 
generalized coordinates q = I!qi 117 = 1 may be described by Lagrange equations of the second kind 

d OT OT 
dt Oili Oqi =Qi(q'~l't)+ Y'bik(q'il't)uk(t)t (I.I) 

i =  1 . . . . .  n 

Throughout, summation over the subscripts i, k ,  s will run from 1 to n.  
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The kinetic energy T of each system of the class is chosen from a set of positive-definite quadratic 
forms 

T=~Y.  aik(q)t/it/k, k0E¢~ <~ T~  < XlY.4 ~ (1.2) 
i , k  i i 

~.j = const, kj > 0 

with continuously differentiable coefficients au,(q ). 
The admissible controls u(t) will be functions ui(O, surnmable over any finite interval and taking values 

in a bounded closed convex domain U, i.e. 

u(t) ~ u, u(t) = II ui(t)ILL,, convU --- u (1.3) 

It is assumed that a bounded closed domain D O C R ~, within which the vector of generalized forces 
may vary, is given 

Q(q , t / , t ) ¢DocR  n, q ~ R  n, t/~lV', t>~to (1.4) 

This means that the functions Qi(q, (t, t) are not given; all that is known is the domain D O in which they 
may take values. 

The elements of the matrix B(q, t/, t) = II bi~(q, t/, t) I1'/, k = 1 are assumed to be uniformly bounded 
functions 

Ibik(q,t/,t)l<~bo, q ¢ R  n, t /ER n, t>~t o (1.5) 

Since the controls ui(t ) may be summable functions, the solutions of Eqs (1.1) will be continuously 
differentiable functions q(t) with absolutely continuous derivatives t/(t). It is therefore assumed that 
the functions Qi(q, tl, t) and bu,(q, tl, t), considered on the set of functions q(t), are summable functions 
of t over any finite interval. 

The class of controllable Lagrange systems (1.1) is defined by the sets U and D o of numbers b 0, X 0, 
L 1. A specific system of the class is singled out by specifying T, the  vector function Q(q, q, t) and the 
matrix B(q, t/, O, subject to the above-mentioned functional and geometrical restrictions. Any such system 
is considered to be a member of the class. 

The problem is to establish conditions for a class of Lagrange systems (1.1) to be completely 
controllable. 

Definition 1.1. Following Kalman, we will say system (1.1) is completely controllable in the 2n-dimen- 
0 0 0 sional phase space {q, q} for a set of bounded controls u(t) e U if, for any two points s {q,  q } and 

1 1 1 s {q,  t /}  of the state space, an admissible control and a finite time t I (each possibly different for 
each pair s °, s 1) exist such that system (1.1) traverses the path s °, s 1 in that time. 

Definition 1.2. A class of controllable Lagrange systems (1.1) is said to be completely controllable 
on a set of bounded controls u(t) ~ U if each system in the class is completely controllable. 

Complete controllability of a class of systems (1.1) implies that the boundary-value problem 

qfto)=q °, 4( t0)=q °, q(t l )=q t, t/(tt)=t/I (1.6) 

will have a solution for any system of the class if the control u(t) ~ U and time t 1 are suitably chosen--  
they may be different for each system and each pair s°{q °, t/0} and sl{q 1, t/l}. 

In this formulation of the problem the boundedness of the controls (1.3) is essential. In most of the 
literature on controllability, the functions u(t) are not assumed to be bounded. 

The desirability of considering a whole collection of systems rather than one specific system arises in various 
problems, particularly when analysing biomechanical systems [1, 2], when it is not possible to specify the systems 
T, Q and B rigorously. An analogous situation arises in robot control, when certain parameters (the payload mass, 
the coefficients of friction, the parameters of the environment, etc.) are not known and may vary over a range. In 
general, such uncertainty is typical of the description of technological systems whose parameters may vary arbitrarily 
within certain tolerances. Consideration of a class of systems also enables general regularities to be revealed since 
the individual properties of specific systems are not used. 
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The main part of this paper is devoted to investigating the complete controllability of systems of 
type (1.1) in which the right-hand sides are linear functions of the control. These systems are covariant 
relative to transformations of the generalized coordinates. Finally, we will consider classes of systems 
in which the generalized forces may depend non-linearly on the control u(t), and systems that are not 
natural [3]. 

2. C O N T R O L L A B I L I T Y  OF A S I M P L E  CLASS 

We will first consider a subclass of systems (1.1) 

d 3T 3T 
= u i ( t )  (2.1) 

dt ~4i t)qi 

which is obtained from (1.1) by putting Q - 0, B = E, where E is the identity matrix of order n. As to 
the controls u(t), we will assume (for simplicity) that 

u ( t ) ¢  Utlu( t ) :  lu,<t)l ~ h ,  i=  1 ..... n} (2.2) 

The criterion for complete controllability of systems of class (2.1) will be used in an essential way 
later, when we consider class (1.1) and further extensions. 

Theorem 1. A class of Lagrange systems (2.1) is completely controllable on a set of bounded controls 
u(t)  ~ U 1 if and o~aly if 

h o = min h i >0 (2.3) 
I~ i~n  

Proof. Necessity. Let us consider a system of class (2.1) in which T = 0.Sk0Y_n.il 2, ~ > 0. In that case 
0 0 0 ~k~l i = Ui(t ). I fk  exists such that h k -- 0, it is not possible to go from a state s in which qk = ilk = 0, along 

1 1 1 trajectories of the system, to a state s in which qk = -1,  ilk = O, since qk(t) -- O. Therefore, when h 0 = 0, 
the class of  systems (2.1) will contain an uncontrollable system, proving the necessity of condition (2.3). 

Sufficiency. The  proof will be carded out constructively, by explicit construction of an admiss~le control 
u(t)  ~ U 1 that steers an arbitrary system of type (2.1) from any initial state s°{q °, 4 °} to an arbitrary 
given terminal state s t{q 1, 41} in a finite time. We will point out the key steps of the proof. 

1. Consider the admissible control (of the same type as dry friction forces) [4] 

ui'= -hi sign qi (2.4) 

The corresponding system (2.1) 

d 3T ~T 
- -  = - h  i sign qi (2.5) 

dt aill t)qi 

has a discontinuous right-hand side. The solutions of system (2.5) are defined [5, 6] as continuously 
differentiable fun,=tions q(t), with absolutely continuous derivatives 4(0, satisfying the differentiable 
inclusion 

d ~T ~T 
F(q) ,  F ( q )  = [I - hi sgn qi 113=1 (2 .6)  

dt ail ~q 

almost everywhere, where 
sgnq i= l ,  if 4 i>0 ;  sgn41=- I  if q i < 0  

sgn 41 = I~i, I~i ~ [ -1 ,  + 1] if qi = 0 (2 .7)  
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In accordance with the definition of the solution of equations with discontinuous right-hand 
sides [5, 6], q(t) is the limit of a sequence of Eqs (2.5) with continuous fight-hand sides, the discontinuous 
functions being approximated in a special way by a sequence of continuous functions tp,(qi) , s = 
1, 2 , . . .  In the case of  system (2.5) one considers, instead of sign qi, a sequence of continuous functions 
(P~(qi) that converge to the function sgn qi defined in (2.7), which is upper semicontinuous with respect 
to inclusion [6]. 

The combination of all the partial limits of the sequence of solutions of (2.1) (q~(t)} for u i = ~,(ili), 
taking all possible approximating sequences ~0,(t~i ) into consideration, defines the set of all solutions of 
system (2.5). It turns out that this set is not empty and, in the case of system (2.5), is identical with the 
set of all solutions of the differential inclusion (2.6) with semicontinuous fight-hand sides. The solution 
of system (2.5), thus defined, need not be unique. 

Accordingly, considering system (2.5) further (and analogous kinds of systems with discontinuous 
right-hand sides), we will always have in mind the corresponding differential inclusion (2.6). By a theorem 
of Filippov [7, 8], for any solution t/(t) of the inclusion (2.6), a summable function ~(t) = II ui (t) I~= 1 

~ i ( t ) = - h i s g n ~ i ( t ) ,  ~ i ( t ) = ' ~ i ( t ) ~ [ - l , l ]  if ~i(t)=O (2.8) 

exists such that, almost everywhere in the interval under consideration 

d 0T OT / (2.9) 

This relationship enables us to define a summable function 13. i (t) on the set where ~(t) = 0. 
The theorem on the variation of the kinetic energy T for any solution of the inclusion (2.6) states that 

J" = -Y~hil ili l (2.10) 

Since T satisfies the inequalities in (1.2), it follows that Y_./I~Ji 1/> (Tn- lk[ l )  ~ and, consequently, it follows 
from (2.10) that T ~  < -hoE/Iqi I ~< -2p4T, where 2p = h0(n-l~.ll) 1/2 > 0 .  

The differential inequality T < -2p~/Twill be valid for any solution of (2.6) or, what is the same, any 
solution of (2.5). Therefore, d~!(T)/dt ~< - p  < 0, implying the inequality ~/T ~< ~/(T0) - p( t -  to), where 
T o is the initial value of the kinetic energy. Consequently, T ~ 0 for t I> t o + p-l~/(T0) = t l ,  and therefore 
£1(t) =- O, q(t) = 2' = const. 

Thus, any motion of system (2.5), allowing for possible non-uniqueness, will reach equilibrium in a 
finite time, the equilibrium state depending in general on the initial state and on the choice of solution 
from the set of all solutions of the inclusion (2.6). 

If a state s°{q °, t~ °} is selected and a motion is chosen arbitrarily from the set of all motions, system 
(2.5) will move along the corresponding trajectory q°(t) and, in a finite time tl, reach some equilibrium 
state M°(~,  0). Denote the function (2.9) corresponding to q°(t) and u°(t). Consequently, when u = 

0 0 0 :.~ u (t) system (2.1), by virtue of (2.9), will transfer from s {q,  q } to M°{~ °, 0)  in a finite time along the 
trajectory q°( t ). 

Similar reasoning shows that an admissible control u = ul(t)  will steer system (2.1) from s l (q  ', il I } 
to some equilibrium state M1(¢,  0} in a finite time t 2 along a trajectory ql(t). The substitution t 

1 
t 2 - t transforms system (2.1) into a system of the same form with control u = u (t 2 - t), since the left- 
hand side of the Lagrange equations (2.1) (in the steady case) is invariant under time inversion. 

."1 1 1 1 1 Therefore, if u(t) = u (t 2 - t), system (2.1) will transfer, in a finite time t2, from M {¢, 0} to s {q ,  q }. 
2 2. To complete the proof, it remains to show that an admissible control u = u (t) exists that steers 

system (2.1) from M°{~P, 0} to MI{) ,1, 0} in a finite time. To do this, consider the vector function 

q2(t  ) = yo + ~ ( y t  _yo)(  ! - costot) (2.11) 

which relates the states M ° and M 1 in a time t 3 = 11;0) -1 .  We will show that q2(t), defined for sufficiently 
small to > 0, will be a solution of (2.1) for some admissible control u(t) e U I. Substituting (2.11) into 
the left-hand side of  (2.1), we get 

d 0T 0 T]  =o)2¥i(costot, sino~t) 
u~(t)= dt ~ili Oqi q=q2f, ) 

(2.12) 
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where ¥i(x, y) are: continuously differentiable functions. In that case I ¥/(cos ~ ,  sin ~ )  I ~< r < 0% 

t I> 0. Choosing the parameter to so that o2r < h0, we see that the function u2(t) in (2.12) will satisfy 
(2.12), i.e. it will be an admissible control. Consequently, the admissible control u2(t) will steer (2.1) 
from M ° {T °, 0} to M l {~, 0} in a time t 3 = if.to-1 < oo .  

3. Finally, we deduce that u°(t) • U 1 steers system (2.1) from s°{q °, 4 °} in a time t 1 < oo t o  

M°{~, 0}, the control u2(t) • UI steers (2.1) from M°{~P, 0} to M~{y t, 0} in a time t 3 = n ~ l  < 0. and, 
finally, the control ul(t2 - t) C U~ steers (2.1) from MI{~, 0} to sl{q 1, ql} in a finite time t 2. 

During the proof, no conditions other than (1.2) were imposed on the choice of system (2.1) (i.e. on 
the choice of the Ion•tic energy 7"). The previous arguments are therefore valid for any system of type 
(2.1), i.e. for the whole class of such systems. This proves the theorem. 

Remark. The proof of Theorem 1 proceeded by actual construction of a control u(t) e U 1 steering a system of 
type (2.1) from a state s o to a state s I in a finite time. The motion consists of a decelerating section, a motion with 
generalized velocities of small absolute value, and an accelerating section. 

3. G E N E R A L  CASE 

We now consider the class of Lagrange systems (2.1), permitting the inclusion of generalized forces 

d OT OT 
= Q(q, ii, t)+ u (3.1) 

dt O~! Oq 

where u(t) satisfies (1.3). System (1.1) becomes (3.1) if one puts B(q, q, t) ~- E. Let ~ denote the bounded 
closed set (defining the class (3.1)) in which the function (-1) Q(q, 4, t) may take values, i.e. 

(-I) Q(q, il, t)•~, ~cR n, q•R n, il•R n, t>~t o (3.2) 

Theorem 2. The class of Lagrange systems (3.1) is completely controllable on a set of bounded controls 
u(t) • U if and only if positive e exists such that 

Ot C U, cony U = U (3.3) 

where *e is a closed e-neighbourhood of the set • in (3.2). 

Proof. Necessity. If condition (3.3) is not satisfied, then for any e > 0 a vector a t • *e exists that does 
not belong to U. Since the point a t and the convex set U do not intersect, a hyperplane (c v x) + d e = 

0 exists separating a S and U. We may assume without loss of generality that c e is a unit vector (11 ce II = 
1). In that case (cE, a~) + d e ~< 0, (c v u) + d c > 0 for all u • U. Reasoning similarly for a sequence e s 
--) 0, we obtain sequences a s, c s (11 c ~ II = 1) and d s. Extracting subsequences if necessary, we obtain 
c s ---} c, d s ---} d and a s a C O. Consider the system of class (3.1) for which T = 1/27q)E,q 2, Q = -a  = 
const. Since L0(c, ~) = -a  + u and by construction (c, a) + d ~< 0, (c, u) + d />  0, it follows that ~(c ,  
/j) = (c, u) - (c, a) = (c, u) + d - (c, a) - d  t> 0 for any u • U. Therefore, it is not possible, moving 
along trajectories of this system from a state s°{q °, 4 °} in which (c, q0) i> 0, (c, q0) I> 0, to reach a state 
s 1{ql, ql }, where (c, ql) < 0, since in that case (c, q(t)) >t (c, qO) + t(c, q0) I> 0 for all t I> 0. Consequently, 
if condition (3.3) does not hold, the class of systems (3.1) will contain an uncontrollable system, proving 
the necessity of (2.3). 

Sufficiency. Consider any system of the form (3.1). If l wi(t) I ~ 2-1e, e > 0, the control u = --Q(q, q, 
t) + w(t) will be admissible by condition (3.3), since in that case u • Oa2 C U. With that choice of 
admissible controt, system (3.1) becomes a system of type (2.1) with u(t) = w(t), I wi(t ) I <~ hi, hi = 2-1e, 
e > 0. By Theorem 1, this system will be completely controllable, so that the same is true of any system 
of class (3.1). 

Condition (3.3) of Theorem 2 enables one to choose an admissible control that not only neutralizes 
the generalized forces Q(q, 4, t) but also guarantees the presence of sufficient resources to ensure that 
the class of systems (3.1) is completely controllable. If the admissible control is chosen to have the form 
u = -Q  + w, the class of systems (3.1) is transformed into class (2.1). When the set • in (3.2) is a 
parallelepiped and the set U has the form (2.2), condition (3.3) may be written as 
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sup lQi(q, il, t) I < hi 

These inequalities have an obvious physical meaning. For example, a robot manipulator with n degrees 
of freedom will belong to the class of completely controllable Lagrange systems if the largest possible 
values h i of the controlling torques of  the drives are greater (in absolute value) than the upper limit of 
the corresponding torques of the forces of gravity, resistance, etc. 

It should be noted that the condition of complete controllability for (3.3) establishes a relationship 
only among the generalized forces and controlling forces. The parameters of the essentially non-linear 
left-hand side of the equations of dynamics defined by the Euler-Lagrange operator have no effect 
whatever on the complete controllability condition, if T satisfies (1.2). This means that the complete 
controllability property for a class of mechanical systems depends not on the structure of the system 
but exclusively on the active and controlling forces. 

Theorem 2 also implies an important conclusion concerning the minimum possible number of  
independent controls. Namely: if a class of mechanical systems (3.1) with n degrees of freedom is 
completely controllable, the number of independent controls ui(t ) must be at least n. 

We will now analyse the class of systems (1.1). Let us consider the subclass of these systems defined 
by the inequality 

IdetB(q, il, t)l> A>O, q • R  n, i I • R " ,  t > t  o (3.4) 

where A > 0 is a fixed positive number. The number A, together with Do, U, b 0, ~ and Z. l, define the 
subclass uniquely. 

To understand the meaning of condition (3.4), consider the system of class (1.1) with T = 1/2~ ~ / ,  
Q = P = const, P • Do, blk(q, q, t) " 0 for all 1 ~< k ~< n. In that case de tB = 0 and q'l = P.p Putting 
Pt ~> 0 to fix our ideas, we see that moving along the trajectories of the system from a state s ° in which 

0 0 1 1 <  ql = ql = 0, it is not possible to reach a state s in which ql ~ 0, since ql ~ 0. 
Thus, as this example shows, condition (3.4) enables us to single out a subclass of  systems (1.1) that 

does not contain uncontrollable systems. The question of whether condition (3.4) is necessary in the 
general case is still open. 

Theorem 3. The subclass of systems (1.1) defined by condition (3.4) is completely controllable if and 
only if a positive number exists such that 

• ~ c u (3.5) 

where I:I~lt is the closed e-neighbourhood of  the bounded set ~ l  within which the vector function 
1 >_ (-1)B- (q, il, t)Q is allowed to vary, where Q c Do, q • R n, q • R n, t ~ t 0. 

Proof. Necessity. If condition (3.5) does not hold, then for any E > 0 a vector a t • ~ l t  exists that is 
not in U. By the separation theorem for convex sets, a hyperplane (c v u) + d t = 0 exists separating a t 
and U, where II ct II = 1. A sequence es ~ 0 induces sequences a ~, c~(ll c s 11 = 1) and a u. Extracting 
subsequences if necessary, we obtain c s ---> c, a s ---> a • dp l, d s ---> d, where (c, a) + d ~< 0 and (c, u) + d 
~> 0 for allu • U. 

Consider the system of class (1.1) for which T = 1/22q~E/q 2, B = const, B-1Q = - a, a c ~1. It follows 
from the equations of  motion of  this system that L0~ = Bu - Ba; hence 

~.o(C, B-l i~) = (c, u) + d - ( c , a ) -  d > O. 

This means that 

(c, B-Iq(t)) > (c, B-lq °) + t(c, B-l(1 °) > O. 

It is therefore impossible, moving along trajectories of this system from a state s°{q °, q0}, where (c, 
B-lq °) I> 0, (c, B-lq °) > 0, to reach a state sl{q l, ql}, where (c, B-lq 1) < 0. Consequently, if condition 
(3.5) is not valid, the subclass of systems (1.1) defined by inequality (3.4) will contain an uncontrollable 
system, proving that condition (3.5) is indeed necessary. 

Sufficiency. Define a control by 
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u = -B -! (q,il,t) Q(q,il,t) + B -I (q,il,t)w 

If l wl(t) I ~< 2-1?1-1c01E; = ~i~ where c o t> I c/k (q, t~, t) I, and C(q, el, t) = B-l(q, gl, t), this control will be 
admissible because u C ~ler2 C U. That the elements of  the matrix C(q, il, t) are uniformly bounded 
follows from (3.4) and (1.5). With the above choice of a control, systems of type (1.1) satisfying (3.4) 
become systems of type (2.1) for ui(t ) = w~(t), where I Wl(t) I ~< IX, Ix > 0. By Theorem 1, all these systems 
will be completely controllable, hence so is class (1.1). 

4. N O N - L I N E A R  D E P E N D E N C E  OF T H E  F O R C E S  ON T H E  C O N T R O L S  

We have been considering Lagrange systems in which the right-hand sides of the equations of motion 
are linear in the controls. We will now consider the general class of controllable Lagrange systems 

d 0T 0T 
dt Oi l Oq =Q(q' il' t, u), u~U,  convU--U (4.1) 

We will define a class of  systems (4.1) which we call the class of solvable systems. 
A class (4.1) is said to be solvable if a positive e exists such that the equations 

Q(q, il, t. u)=w, qcR ~, ileR n, t>t o (4.2) 

have an admissible solution 

U=Uo( q, il, t. w ) c U ,  q c R " ,  i l~R  ~, t > t  o (4.3) 

for all w in the sphere II w II ~< e. 
All the classes of systems considered hitherto, including the subclass (1.1) and (3.4), belonged to the 

set of solvable systems. 

Theorem 4. The class of solvable Lagrange systems (4.1) is completely controllable on a set of bounded 
controls u ~ U. 

The truth of this theorem follows directly from Theorem 1. Indeed, if one takes a function uo(q, ?1, 
t, w) as in (4.3) as an admissible control in (4.1), the class (4.1) becomes the class (2.1), which is completely 
controllable for II w II ~< e. 

Note that the complete controllability concept is strongly related to the issue of whether some motion 
q*(t) is realizable, i.e. the issue of the existence of an admissible control satisfying the condition 

• [d0r 
Q(t, q , t, u)=  dt 0q Oq Jq=q.t,~ 

This equation is essentially an equation of type (4.2) for u(t). 
Note that the analytic solvability conditions (4.3) may be obtained using the implicit function 

theorem, if the equation Q(q, q, t, u) = 0 has a solution a(q, tl, t) that varies within a closed domain 
/2 c int U. 

5. T H E  C O N T R O L L A B I L I T Y  OF CL ASSE S  
OF N O N - N A T U R A L  S Y S T E M S  

In this section the results obtained above will be extended to classes of systems that are not natural. 
The kinetic e n e r ~  T of such systems may be an arbitrary strictly convex function of the generalized 
velocities t~t, not necessarily representable in the form (1.2). 

In the previous presentation Theorem I was of central importance, as the complete controllability 
conditions formulated in Theorems 2-4 enabled us to reduce the problem to systems of type (2.1). With 
this in mind, we will only establish an analogue of Theorem 1 for non-natural systems. In the proof of 
Theorem I we used the theorem on the variation of the kinetic energy T = EtQiili. Since the analogue 
of this theorem for non-natural systems is the condition 
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d ° 

one naturally changes to canonical variables {q, p}, defining the generalized momenta p in terms of 
the Legendre transformation Pi = OT[~i. As we know, the Legendre transformation defines a 
diffeomorphism of the spaces {q, q} and {q, p} if T(q, tl) is a strictly convex function of q such that 

X i (3T I t}qi)2 _+ ** as Xiq/2 ~ ** 

In that case [9] the Hamiltonian 

n(q,  p) = m ~ [ ( p , 4 ) -  T(q,q)l 

will be strictly convex in p, with a unique minimum point p = 0 (H(q, 0) = 0), and the equations of 
motion of systems of class (2.1) will be 

iti =~H I ~p i, [7 i = -~H  l ~qi + ui(t), u E U l (5.1) 

(the set U 1 was defined in (2.2)). When generalized forces are present, the right-hand sides of Eqs (5.1) 
for the momenta p will contain terms Qi(q, P, t). Let us consider a class of controllable systems (5.1) 
in which H(q,p)  may be an arbitrary strictly convex function of the momentap of class c 2 satisfying the 
inequalities 

qh(llptl)_< n(q ,  p)~92(llpll) 

%(l lp l l )~Xi (~HlOpi )  2, p e R  n, q e R "  (5.2) 

where %(~) (%(0) = 0) are continuous strictly increasing functions with infinitely large lower limit [10]. 
The only stationary part of the Hamiltonians H(q, p) that we have admitted for consideration is 

p = 0. The functions Qs(~) in (5.2) determine the class of systems (5.1) under consideration and 
are assumed to be given. In the natural systems considered above, Qs(~) = as~ 2, since H(q, p) = 
0.5Z/k0tu,(q)PiOk. 

Under these assumptions the following assertion holds. 

Theorem 5. The class of systems (5.1) just described is completely controllable if and only if condition 
(2.3) holds. 

Proof. Necessity. Ifk exists for which h k = 0, the class (5.1) will contain uncontrollable systems. Indeed, 
consider H = ~_fli(Pi). In this case/~k = 0. Therefore, it is not possible to go from a state s°{q °, p0} to 
a state sl{ql, p 1} withp~ x pO. 

Sufficiency. Choose any two points s°{q °, p0} and sl{q l, pl} of the phase space {q, p} and consider 
the control u i = - h  o sign (OH/Opi). The corresponding system (5.1) will be 

/li = aH / 3Pi, Pi = -i}H / $qi - ho sign(3n / ~}Pi) (5.3) 

The total derivative of H along trajectories of (5.3), i.e. along trajectories of the differential inclusion 
corresponding to (5.3) 

tl -- ~H / ~p, ib + ¢3H / ~q e -holt sgn ~H / Spill~= I 

(the function sgn rl was defined in (2.6)), will be 

H = -hoXit n / ap,, 

and by (5.2) we obtain the estimate H ~< -h0(n-t%(ll p II)) v2 < 0 for p ~ 0. Inequalities (5.2) and 
the strict monotonicity of the functions %(11P II) imply an estimate II P II/> ¥2(H), which leads to the 
inequality 
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/~/< -ho(n-Iip3(~l/2(H))) ~ 

Hence it follows that the manifold H = 0 is asymptotically stable. It follows from the last inequality 
and from the estimates (5.2), which are uniform in q e R ~, that for any e > 0 and A > 0 t(e, A) exists 
such that lip(t) II ~< e for all liP II ~< e, provided that liP0 II ~< A. In the sphere lip II ~ e, where e > 0 is 
sufficiently small, the function H(q, p), which is strictly convex in p, admits of a representation 

H(q, p) = O, 5~,ikci~ (q)PiP~ + ¥(q,  P), ci~ = ( ~2H I ~pi~p~ )p=0 (5.4) 

where I ~(q, p) I ~< Pll P I[ ~ for sufficiently small p > 0. Since H(q, p)  is strictly convex in p, it follows 
that Y-~i~(q)PiPk >~ ~hY.~Oi ~, ~tl = const, IX~ > 0. Hence, in the sphere lip II ~< ~, where ~ > 0 is sufficiently 
small, we have H(q, p) >i p.Eipi ~, Ix = const, la > 0. Consequently, I Pi I ~< (~-~H) 1/~ in this sphere and 
the derivative H = -hoEil ~H/3pi I satisfies the estimate 

/q - -ho(B-~H) )~ = -213(H) ~ ,  13 > 0 (5.5) 

Indeed, it follows from the convexity of H(q, p) as a function o fp  that 

H( q, p) < ~.iPi~H l ~Pi < ~il pil laH l ~Pil< (p-I H)~ Y.il~H l 3pil 

whence it follows that (~ln) 1/'2 ~ ZilOH/3Pil, implying the validity of (5.5). 
Therefore, d/dtH 1/2 ~< --13 < 0, which implies H l:z ~< H l:z - 13(t - to). Taking (5.2) into account, we 

obtain ~pl;Z(ll p II) ~< ~0~(llp II) - I](t -to), which directly implies the identityp(t) -- 0 for t t> t 0 + I~-lq~ t2 
(liP II). Since OH,'Op = 0 forp = 0, it follows that q(t) = 0 for t  ~> t o + I~-lq~/2(llp0 II) and q(t) = y. This 
may also be established using a theorem due to Rumyantsev [10], in combination with a theorem 
from [11]. 

Thus, system (5.3) will take a finite time to move along a trajectory {q°(t), p°(t)}, which may be 
chosen arbitrarily from the set of all solutions of (5.3), from a state s°{q °, p0} to an equilibrium state 
M°{T °, 0}. As in tlhe proof of Theorem 1, one can define on the motion {q°(t),p°(t)} a summable function 
uO(t) ~ U 1 which steers (5.1) from s ° to M". 

In exactly the :~ame way one shows that the system 

ill = -OH / api. Pl = OH / 3Pi - ho sign(0H / ~Pi ) 

obtained from (5.1) by time inversion, will proceed in a finite time t 2 from s I {ql,pl} to MI{T a, 0} along 
a trajectory {ql(t) ,pl(t)} defined by an admissible control u2(t). Inverting time in this latter system, we 
conclude that system (5.1) will transfer from M 1 to s I under the control u = u(t 2 - t). 

We claim that a control u3(t) ~ U exists that steers (5.1) from M°{~, 0} to MI{T a, 0} in a finite time. 
To prove this, consider the function (2.11), which joins the points M ° and M 1 in {a, b} snace in time 
.~co -1. Since the L~gendre transformation defines a diffeomorphism of {q, q} and {q,p} spaces, the value 
q = 0 corresponds to the single point p = 0, since p = 0 is the unique point at which OH/Op = O. 
Consequently, the function (2.11) will also join h4 o and M 1 in {q,p}  space. 

We claim that this trajectory may be realized in (5.1) using an admissible control, and moreover in 
such a way that II p(t) II ~< e. For sufficiently small II q II, corresponding to II P II ~< e, proceeding as for 
(5.4), we obtain 

T = ~'.i.kaik(q)iliih +Vl(q,  q) 

and sopi = OT/Oq = Zsq/~(q , q)qs, which defines functionspi(t ) = co ~i(sin cot, cos ~t) and/~i (t) = ~2q~i(sin 
cot, cos cot) with continuous functions 9/(x,y) and ~gi(x,y) on the motion (2.11). For liP II ~ e, it follows 
from (5.4) that on the motion (2.11) OH/Opi = 0~2Oi (sin ~ ,  cos ~ ) .  Therefore, putting u3(t) = pi(t) + 
OH/3q i = o~ZR(sin cot, cos ~ ) ,  we conclude that u3(t) e U 1 for sufficiently small co. Choosing co so that 
u3(t) ~ U 1 and II p(t) II ~< e, we see that u3(t) will steer system (5.1) from M ° to M 1 in a finite time. 
Since the specific form of the Hamiltonian H(q,p)  was not used in the proof, all the arguments remain 
valid for all systems of class (5.1), where the Hamiltonian satisfies (5.2). This completes the proof of 
Theorem 5. 

Analogues of Theorems 2, 3, and 4 for non-natural systems may be established using Theorem 5--  
the proofs are verbatim repetitions of those given here. 
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